Tag Archives: Teaching

April 8, 2014, 2:58 pm

The problem is not the students.

Last week I posted what I considered to be an innocuous and mildly interesting post about a proposed formal definition of flipped learning. I figured it would generate a few retweets and start some conversations. Instead, it spawned one of the longest comment threads we’ve had around here in a while – probably the longest if you mod out all the Khan Academy posts. It was a comment thread that made me so angry in places that it has taken me a week to calm down to the point where I feel I can respond.

It takes a bit of backstory to explain why I was so emotionally worked up over some of the comments in that thread, so bear with me for a minute.

We’re in week 13 of our semester here. I am teaching three courses (two preps), all using flipped learning models. One of these courses is part of the General Education curriculum, and the other serves mostly students in the CS…

Read More

January 27, 2014, 7:55 am

The inverted calculus course: Overture

3011652637_05f202dca6_n As many Casting Out Nines readers know, last semester I undertook to rethink the freshman calculus 1 course here at my institution by converting it to an inverted or “flipped” class model. It’s been two months since the end of that semester, and this blog post is the first in a (lengthy)  series that I’ll be rolling out in the coming weeks that lays out how the course was designed, what happened, and how it all turned out.

Let me begin this series with a story about why I even bother with the flipped classroom.

The student in my programming class looked me straight in the eye and said, “I need you to lecture to me.” She said, “I can’t do the work unless someone tells me how to get started and then shows me how, step by step.” I took a moment to listen and think. “Do you mean that you find the work hard and it’s easier if someone tells you how to start and…

Read More

December 18, 2013, 1:25 pm

Dijkstra, radical novelty, and the man on the moon

dijkstraOver three years ago, I wrote a post to try to address a fallacy that is used to refute the idea of novel ways of teaching mathematics and science. That fallacy basically says that mathematics and the way people learn it have not fundamentally changed in hundreds if not thousands of years, and therefore the methods of teaching  that have “worked” up to this point in history  don’t need changing. Or more colloquially, “We were able to put a man on the moon with the way we’ve taught math for hundreds of years, so we shouldn’t change it now.” I sometimes refer to this as the “man on the moon” fallacy because of that second interpretation.

To understand why I think this is a fallacy, read the post above – or better yet, read this long quote from a 1988 paper by Edsger Dijkstra, one of the great scientific minds of the last 100 years and one of the authors of modern…

Read More

March 25, 2013, 8:00 am

Examples and the light bulb

6186929069_f72cf92699_nI have a confession to make: At this point in the semester (week 11), there’s a question I get that nearly drives me to despair. That question is:

Can we see more examples in class?

Why does this question bug me so much? It’s not because examples are bad. On the contrary, the research shows (and this is surely backed up by experience) that studying worked examples can be a highly effective strategy for learning a concept. So I ought to be happy to hear it, right?

When people ask this question because they want to study an example, I’m happy. But studying an example and seeing an example are two radically different things. Studying an example means making conscious efforts to examine the example in depth: isolating the main idea or strategy, actively trying out modifications to the objects involved, making connections to previous examples and mathematical results, and – very …

Read More

March 8, 2013, 4:30 pm

The inverted classroom as platform

211239773_940d75fc4d_nI’ve been talking a lot with my colleagues about their teaching practices, as part of the NSF grant I’m working on. The inverted classroom (I used to call it the flipped classroom, but I’m going back to “inverted”) has come up a lot as a teaching technique that people have heard a lot about but haven’t tried yet — or are wary of trying. I’ve been wondering about the language being used, namely: Is the inverted classroom really a “teaching technique” at all?

My answer used to be “yes”. When I first started using the inverted classroom idea, I would describe the inverted classroom as “a teaching technique” that involves reversing where information transmission and internalization take place. Later I moved to saying that the inverted classroom refers to “any teaching method” that implements this reversal. Today as I was thinking about this, I think a…

Read More

December 31, 2012, 9:01 am

A conversation about teaching preparation

Here’s a piece of a conversation I just had with my 8-year old daughter, who is interested in becoming a teacher when she grows up.

Daughter: Dad, if you want to become a teacher, do you have to take classes?

Me: Yes. You have to take a lot of classes about how to teach and a lot of classes in the subjects you want to teach. You need to be really good at math to teach math, for example.

D: Then do you have to go out and teach in the schools, like Mr. D___ [the young man who student-taught in my daughter's elementary school this year]?

Me: That’s right. You have to take classes and you have to go into the schools and practice.

D: Do you have to practice with the little kids?

Me: That depends on who you want to teach. If you want to become an elementary school teacher you work with elementary school kids. If you want to teach in a middle school, then you work with middle …

Read More

November 9, 2012, 7:00 am

The social element of learning about effective teaching strategies

Speaking of faculty adopting research-based instructional strategies, Theron Hitchman (who blogs at Circles and Tangents) wonders aloud in the direction of math education researchers: Why didn’t you tell me? That is, referring to research-based instructional strategies that seem to work really well with students,

Why do I stumble on these things only to find that they have been understood for decades? Why didn’t someone knock on my door and tell me I was doing it wrong?

My basic point is this: If you do research on teaching and learning, you owe it to society to share what you know. Scholarly publication doesn’t count. The mathematics education community talking to itself is a necessary condition for sorting out the truth of things, but it is insufficient for educating the public and for changing practice on a large scale.

If you know that the standard lecture-homework-exam …

Read More

June 27, 2012, 11:52 am

Two big mistakes in thinking about technology in education

Slate magazine has been running several articles on education this week, including two today that are of interest. This one by Konstantin Kakaes is worth looking at more closely, if only because it somehow manages to gather almost every wrong idea about technology in education in existence into a single, compact article.

The piece proposes that the effort to increase the use of technology in education “is beginning to do to our educational system what the transformation to industrial agriculture has done to our food system over the past half century: efficiently produce a deluge of cheap, empty calories.” I’m not sure which “effort” Kakaes is referring to, since there is no single push being coordinated from a secret underground bunker that I know of, and some efforts are better-conceived than others. But nevermind.

There are two overriding conceptual errors that drive this article…

Read More

May 4, 2012, 4:00 pm

Peer instruction and Calculus 2

Sorry for the boring title and lack of catchy image, but since my first post about the upcoming six-week Calculus 2 course, I’ve expended all my creativity getting the course put together and getting ready for Monday. In the earlier post I laid down some design ground rules for the course. Here, I’m going to say a little more in detail about what we’ll be doing.

It’s especially important on a highly compressed schedule like ours to use the class meetings themselves to jumpstart the assimilation process and then train students on how to carry that process forward as they go to work on the day’s material in the afternoon and evening. This is always an important goal of class meetings in any course — I’d go as far as to say that this is why we have class meetings at all. But when you cram a 14-week course into 6 weeks, it doesn’t take long for one incorrectly-assimilated concept to…

Read More

April 12, 2012, 9:45 am

Can Math Be Made Fun?

 

http://www.flickr.com/photos/hodgers/

This article in the Chicago Tribune talks about efforts to make math fun:

In the American drive to boost science and math education, it’s science that has all the kid-friendly sizzle: Robots and roller coasters, foaming chemical reactions, marshmallow air cannons.

Math has… well, numbers.

“America has a cultural problem with math. It’s the subject, more than any other, that we as a country love to hate,” said Glen Whitney, a passionate mathematician who worked for years developing algorithms for hedge funds. “We don’t see it as dynamic. It’s rote and boring and done by dead Greek guys a thousand years ago.”

The article goes on to talk about some efforts to spice up math, including MIT’s Labyrinth tournament, DimensionU‘s celebrity-driven “DU the Math”…

Read More