In my Linear Algebra class we use a lot of MATLAB — including on our timed tests and all throughout our class meetings. I want to stress to students that using professional-grade technological tools is an essential part of learning a subject whose real-life applications closely involve the use of those tools. However, there are a few essential calculations in linear algebra, the understanding of which benefits from doing by hand. One of those calculations is row-reduction. Nobody does this by hand; but doing it by hand is useful for understanding elementary row operations and for getting a feel for the numerical processes that are going on under the hood. And it helps with understanding later concepts, notably that of the LU factorization of a matrix.

I have students take a mastery exam where they have to reduce a 3×5 or 4×6 matrix to reduced echelon form by hand. They are not…

I’ve put up a few posts and several comments about the inverted classroom this week. A lot of that is because the second iteration of the MATLAB course is coming around at the beginning of February (we have a January term, so spring classes start a little late for us) and that’s done entirely in “inverted” mode. There were a lot of comments in this post about the inverted classroom, and based on some of those comments as well as some questions I got at my Joint Meetings talk on this subject, I thought I’d say a little about how, exactly, this instructional method gets implemented on a day-to-day basis in the MATLAB course.

The MATLAB course meets once a week (Wednesdays) for 75 minutes. This sets up a once-per-week workflow that repeats itself every Wednesday. Here’s how it will go:

This week I’ve been immersed in the inverted classroom idea. First, I gave this talk about an inverted linear algebra classroom at the Joint Meetings in New Orleans and had a number of really good conversations afterwards about it. Then, this really nice writeup of an interview I gave for MIT News came out, highlighting the relationship between my MATLAB course and the MIT OpenCourseware Project. And this week, I’ve been planning out the second iteration of that MATLAB course that’s starting in a few weeks, hopefully with the benefit of a year’s worth of experience and reflection on using the inverted classroom to teach technical computing to novices.

One thing that I didn’t talk much about at the Joint Meetings or in the MIT interview was perhaps the most prominent thing about using the inverted …

Fall Semester 2010 is in the books, and I’m heading into an extended holiday break with the family. Rather than not blog at all for the next couple of weeks, I’ll be posting (possibly auto-posting) some short items that take a look back at the semester just ended — it was a very eventful one from a teaching standpoint — and a look ahead and what’s coming up in 2011.

I’ll start with the look head to January 2011. We have a January term at my school, and thanks to my membership on the Promotion and Tenure Committee — which does all its review work during January — I’ve been exempt from teaching during Winter Term since 2006 when I was elected to the committee. This year I am on a subcommittee with only three files to review, so I have a relatively luxurious amount of time before Spring semester gets cranked up in February. A time, that is, which is immediately gobbled up by the…

It’s been a little quiet on the screencasting front lately, but in the next couple of weeks my colleague teaching Calculus III will be hitting material for which I volunteered to provide some content: namely, using MATLAB to visualize some of the surfaces and solids used in multiple integration. Yesterday, I finished two of these. The first on is on polar coordinates and polar function plotting in MATLAB:

And the second one is on cylindrical coordinates and plotting two-variable functions in cylindrical coordinates:

MATLAB doesn’t provide a built-in function for plotting in cylindrical coordinates. Instead — and this is either ingenious or annoying depending on how you look at it — to plot something in cylindrical coordinates, you generate all the points you need in cylindrical coordinates and then use the pol2cart function to convert them en masse to cartesian coordinate…

By my count, this past week I produced and posted 22 different screencasts to YouTube! Almost all of those are short instructional videos for our calculus students taking Mastery Exams on precalculus material. But I did make two more MATLAB-oriented screencasts, like last week. These focus on creating contour plots in MATLAB.

Here’s Part 1:

And Part 2:

I found this topic really interesting and fun to screencast about. Contour plots are so useful and simple to understand — anybody who’s ever hiked or camped has probably used one, in the form of a topographical map — and it was fun to explore the eight (!) different commands that MATLAB has for producing them, each command producing a map that fits a different kind of need. There may be even more commands for contour maps that I’m missing.

I probably won’t match this week’s output next week, as I’ll be on the road in …

I’ve just started on a binge of screencast-making that will probably continue throughout the fall. Some of these screencasts will support one of my colleagues who is teaching Calculus III this semester; this is our first attempt at making the course MATLAB-centric, and most of the students are alums of the MATLAB course from the spring. So those screencasts will be on topics where MATLAB can be used in multivariable calculus. Other screencasts will be for my two sections of calculus and will focus both on technology training and on additional calculus examples that we don’t have time for in class. Still others will be just random topics that I would like to contribute for the greater good.

Here are the first two. It’s a two-part series on plotting two-variable functions in MATLAB. Each is about 10 minutes long.

Part of the reason I’m doing all this, too, is to force myself …

I’ve made it to the end of another semester. Classes ended on Friday, and we have final exams this coming week. It’s been a long and full semester, as you can see by the relative lack of posting going on here since around October. How did things go?

Well, first of all I had a record course load this time around — four different courses, one of which was the MATLAB course that was brand new and outside my main discipline; plus an independent study that was more like an undergraduate research project, and so it required almost as much prep time from me as a regular course.

The Functions and Models class (formerly known as Pre-calculus) has been one of my favorites to teach here, and this class was no exception. We do precalculus a bit differently here, focusing on using functions as data modeling …

One of the fringe benefits of having immersed myself in MATLAB for the last year (in preparation for teaching the Computer Tools for Problem Solving course) is that I’ve learned that MATLAB is an excellent all-purpose tool for preparing materials for my math classes. Here’s an example of something I just finished for a class tomorrow that I’m really pleased with.

I was needing to create a sequence of scatterplots of data for a handout in my Functions and Models class. The data are supposed to have varying degrees of linearity — some perfect/almost perfectly linear, some less so, some totally nonlinear — and having different directions, and the students are supposed to look at the data and rank the correlation coefficients in order of smallest to largest. (This is a standard activity in a statistics class as well.)

I could have just made up data with the right shape on Excel or…

One of these days I’ll get back to blogging about the mathematics courses I teach, which make up the vast majority of my work, but the MATLAB course continues to be the place where I am working the hardest, struggling the most, learning the biggest lessons about teaching, and finally having the greatest sense of reward. This week was particularly rewarding because I think I finally figured out a winning formula for teaching a large portion of this stuff.

This was the last in a three-week series on introduction to programming. We had worked with FOR loops already. I had planned to look at WHILE loops in the same week as FOR loops, then have the students play around with branching structures in week 2, then have them apply it to writing programs to do numerical integration week 3 for use in their Calculus II class in which most of the class is currently enrolled. But the FOR loop stuff we…

I am a mathematician and educator with interests in cryptology, computer science, and STEM education. I am affiliated with the Mathematics Department at Grand Valley State University in Allendale, Michigan. The views here are my own and are not necessarily shared by GVSU.

The Chronicle Blog Network, a digital salon sponsored by The Chronicle of Higher Education, features leading bloggers from all corners of academe. Content is not edited, solicited, or necessarily endorsed by The Chronicle. More on the Network...