Tag Archives: Math

May 10, 2011, 7:42 am

Understanding "understanding"

This past Saturday, I was grading a batch of tests that weren’t looking so great at the time, and I tweeted:

I do ask these two questions a lot in my classes, and despite what I tweeted, I will probably continue to do so. Sometimes when I do this, I get questions, and sometimes only silence. When it’s silence, I am often skeptical, but I am willing to let students have their end of the responsibility of seeking help when they need it and handling the consequences if they don’t.

But in many cases, such as with this particular test, the absence of questions leads to unresolved issues with learning, which compound themselves when a new topic is connected to the old one, compounded further when the next topic is reached, and so on. Unresolved questions are like an invasive species entering an ecosystem. Pretty soon, it becomes impossible even to ask or answer questions about the material…

Read More

February 25, 2011, 8:00 am

Technology making a distinction but not a difference?

This article is the second one that I’ve done for Education Debate at Online Schools. It first appeared there on Tuesday this week, and now that it’s fermented a little I’m crossposting it here.

The University of South Florida‘s mathematics department has begun a pilot project to redesign its lower-level mathematics courses, like College Algebra, around a large-scale infusion of technology. This “new way of teaching college math” (to use the article’s language) involves clickers, lecture capture, software-based practice tools, and online homework systems. It’s an ambitious attempt to “teach [students] how to teach themselves”, in the words of professor and project participant Fran Hopf.

It’s a pilot project, so it remains to be seen if this approach makes a difference in improving the pass rates for students in lower-level math courses like College Algebra, which have been at around 60…

Read More

February 15, 2011, 11:42 am

An M-file to generate easy-to-row-reduce matrices

In my Linear Algebra class we use a lot of MATLAB — including on our timed tests and all throughout our class meetings. I want to stress to students that using professional-grade technological tools is an essential part of learning a subject whose real-life applications closely involve the use of those tools. However, there are a few essential calculations in linear algebra, the understanding of which benefits from doing by hand. One of those calculations is row-reduction. Nobody does this by hand; but doing it by hand is useful for understanding elementary row operations and for getting a feel for the numerical processes that are going on under the hood. And it helps with understanding later concepts, notably that of the LU factorization of a matrix.

I have students take a mastery exam where they have to reduce a 3×5 or 4×6 matrix to reduced echelon form by hand. They are not…

Read More

January 12, 2011, 1:41 pm

Another thought from Papert

Seymour Papert - Grafik

Image via Wikipedia

Like I said yesterday, I’m reading through Seymour Papert’s Mindstorms: Children, Computers, and Powerful Ideas right now. It is full of potent ideas about education that are reverberating in my brain as I read it. Here’s another quote from the chapter titled “Mathophobia: The Fear of Learning”:

Our children grow up in a culture permeated with the idea that there are “smart people” and “dumb people.” The social construction of the individual is as a bundle of aptitudes. There are people who are “good at math” and people who “can’t do math.” Everything is set up for children to attribute their first unsuccessful or unpleasant learning experiences to their own disabilities. As a result, children perceive failure as relegating them either to the group of “dumb people” or, more often, to a group of…

Read More

January 4, 2011, 8:41 pm

Bound for New Orleans

Happy New Year, everyone. The blogging was light due to a nice holiday break with the family. Now we’re all back home… and I’m taking off again. This time, I’m headed to the Joint Mathematics Meetings in New Orleans from January 5 through January 8. I tend to do more with my Twitter account during conferences than I do with the blog, but hopefully I can give you some reporting along with some of the processing I usually do following good conference talks (and even some of the bad ones).

I’m giving two talks while in New Orleans:

  • On Thursday at 3:55, I’m speaking on “A Brief Fly-Through of Cryptology for First-Semester Students using Active Learning and Common Technology” in the MAA Session on Cryptology for Undergraduates. That’s in the Great Ballroom E, 5th Floor Sheraton in case you’re there and want to come. This talk is about a 5-day minicourse I do as a guest lecturer in our…

Read More

December 23, 2010, 8:00 am

Conrad Wolfram's vision for mathematics education

A partial answer to the questions I brought up in the last post about what authentic mathematics consists of, and how we get students to learn it genuinely, might be found in this TED talk by Conrad Wolfram called “Teaching kids real math with computers”. It’s 17 minutes long, but take some time to watch the whole thing:

[ted id=1007]

Profound stuff. Are we looking at the future of mathematics education in utero here?

Enhanced by Zemanta

December 22, 2010, 12:00 pm

Misunderstanding mathematics

Plots of quadratic equations with discriminant...

Image via Wikipedia

Robert Lewis, a professor at Fordham University, has published this essay entitled “Mathematics: The Most Misunderstood Subject”. The source of the general public’s misunderstandings of math, he writes, is:

…the notion that mathematics is about formulas and cranking out computations. It is the unconsciously held delusion that mathematics is a set of rules and formulas that have been worked out by God knows who for God knows why, and the student’s duty is to memorize all this stuff. Such students seem to feel that sometime in the future their boss will walk into the office and demand “Quick, what’s the quadratic formula?” Or, “Hurry, I need to know the derivative of 3x^2 – 6x +1.” There are no such employers.

Prof. Lewis goes on to describe some ways in which this central misconception is worked…

Read More

December 21, 2010, 4:41 pm

Coming up in January

Fall Semester 2010 is in the books, and I’m heading into an extended holiday break with the family. Rather than not blog at all for the next couple of weeks, I’ll be posting (possibly auto-posting) some short items that take a look back at the semester just ended — it was a very eventful one from a teaching standpoint — and a look ahead and what’s coming up in 2011.

I’ll start with the look head to January 2011. We have a January term at my school, and thanks to my membership on the Promotion and Tenure Committee — which does all its review work during January — I’ve been exempt from teaching during Winter Term since 2006 when I was elected to the committee. This year I am on a subcommittee with only three files to review, so I have a relatively luxurious amount of time before Spring semester gets cranked up in February. A time, that is, which is immediately gobbled up by the…

Read More

December 16, 2010, 2:30 pm

A problem with "problems"

I have a bone to pick with problems like the following, which is taken from a major university-level calculus textbook. Read it, and see if you can figure out what I mean.

This is located in the latter one-fourth of a review set for the chapter on integration. Its position in the set suggests it is less routine, less rote than one of the early problems. But what’s wrong with this problem is that it’s not a problem at all. It’s an exercise. The difference between the two is enormous. To risk oversimplifying, in an exercise, the person doing the exercise knows exactly what to do at the very beginning to obtain the information being requested. In a problem, the person doesn’t. What makes an exercise an exercise is its familiarity and congruity with prior exercises. What makes a problem a problem is the lack of these things.

The above is not a problem, it is an exercise. Use the

Read More

November 29, 2010, 9:00 am

What correlates with problem solving skill?

About a year ago, I started partitioning up my Calculus tests into three sections: Concepts, Mechanics, and Problem Solving. The point values for each are 25, 25, and 50 respectively. The Concepts items are intended to be ones where no calculations are to be performed; instead students answer questions, interpret meanings of results, and draw conclusions based only on graphs, tables, or verbal descriptions. The Mechanics items are just straight-up calculations with no context, like “take the derivative of \(y = \sqrt{x^2 + 1}\)”. The Problem-Solving items are a mix of conceptual and mechanical tasks and can be either instances of things the students have seen before (e.g. optimzation or related rates problems) or some novel situation that is related to, but not identical to, the things they’ve done on homework and so on.

I did this to stress to students that the main goal of taking …

Read More