Category Archives: Sage

September 13, 2011, 7:30 am

Taking the Fundamental Theorem challenge

To all the new readers: Ready for some math? We love math here at Casting Out Nines, and I’ll be taking at least one day a week to talk about a math topic specifically. If you have a math post you’d like to see, email me (robert [dot] talbert [at] gmail [dot] com) or leave a comment.

The Fundamental Theorem of Calculus is central to an understanding of how differential and integral calculus connect. It says that if f is a continuous function on a closed interval [a,b] and x is in the interval, then the function

is an antiderivative for f. That is, F’(x) = f(x). The FTC (technically, this is just one part of that theorem) shows you how to construct antiderivatives for any continuous function. Possibly more importantly, it connects two concepts about change — the rate of change and the amount of accumulated change in a function. It’s a big deal.

I use a lot of technology in my…

Read More

March 1, 2009, 4:40 pm

Keeping things in context

Part of Article 131 in the first edition (1801...
Image via Wikipedia

I’ve started reading through Stewart and Tall’s book on algebraic number theory, partly to give myself some fodder for learning Sage and partly because it’s an area of math I’d like to explore. I’m discovering a lot about algebra in the process that I should have known already. For example, I didn’t know until reading this book that the Gaussian integers were invented to study quadratic reciprocity. For me, the Gaussian integers were always just this abstract construction that  Gauss invented evidently for his own amusement (which maybe isn’t too far off from the truth) and which exists primarily so that I would have something to do in abstract algebra class. Here are the Gaussian integers! Now, go and find which ones are units, whether this is a principal ideal domain, and so on. Isn’t this fun?

Well, yes, actually it is fun for me, but that’s because I like a…

Read More